Turbo gives petrol cars a boost as diesel faces backlash

_86585198_landingpage_proceed-gt_desktop_lightbox-7

“Diesel has emerged as the dominant fuel type for company cars, as a result of great fuel efficiency, performance and low cost of ownership under the government’s CO2 emissions based tax regime,” says Gerry Keaney, chief executive of the British Vehicle Rentals and Leasing Association, whose members own or fleet manage more than three million cars in the UK.

“But the diesel proportion of new registrations has been falling gradually for some time, as modern petrol powered cars have become better at delivering similar benefits, and we expect this trend to gather pace.”

In the UK, even company car buyers now see downsized petrol engines, many emitting around 100g/km CO2, as a viable, efficient alternative to diesel.

Old-fashioned carImage copyrightThinkstock
Image captionThe age of the gas guzzling automobile is over

This is not just down to “anti-diesel sentiment”, says Al Bedwell, director, global powertrains at LMC Automotive. “It has more to do with petrol getting better and staging a fight-back, especially in small cars in Western Europe.”

Manufacturers such as Ford, Opel/Vauxhall, Hyundai and Volkswagen are all offering similarly downsized petrol engines these days, many emitting around 100g/km of CO2.

In Europe, diesel’s share of the market is set to drop from 53.3% of the market in 2014 to 51.5% in 2015, says Mr Bedwell, then continue sliding to 35% by 2020.

Power boost

Turbo chargers are traditionally associated with diesel engines, which needed a boost to give them more oomph. They weren’t “much fun to drive” without them, says Guillaume Devauchelle, head of innovation and science at automotive technology company, Valeo.

And the relative cost of adding turbo to an expensive diesel engine was lower, he explains.

Light vehicles market graphicImage copyrightGetty Images

But turbos are now increasingly infiltrating petrol engines because they deliver dramatic emissions reductions and improvements in fuel economy, without sacrificing performance, says Craig Balis, chief technology officer of Honeywell Transportation Systems, the world’s largest turbo maker.

A two-litre turbo-charged four cylinder petrol engine can match the output of a three-litre naturally aspirated V6 petrol engine, he says, so “the technology we have is really a no-compromise solution”.

Turbos work by using the engine’s exhaust gas to drive a turbine, which in turn drives a compressor, which compresses air. This air is then forced into the combustion chamber where it mixes with fuel to create additional power.

This means the engine won’t have to burn so much fuel to deliver the same output.

Video grab of smaller v, larger engineImage copyrightHoneywell 
Image captionTurbochargers help smaller engines achieve the same horsepower (hp) as larger engines

“Our turbos for passenger vehicles have turbines that spin at 200,000-300,000 revolutions per minute (rpm), generating temperatures of up to 1,000 degrees Celsius, so the metal is literally glowing red,” Mr Balis says.

By comparison petrol engines operate at just 6,000-7,000 rpm and diesel at 5,000-6,000rpm.

To cope with such extreme speed, pressure and heat, turbos need to be incredibly robust, so Honeywell is using ball bearings and other technologies that have been developed for military aircraft by the company’s aerospace division.

The turbos are also coupled with intercoolers that cool the airflow and increases its density as it is supplied to the engine, and with oil cooling systems that prevent overheating.

Instant power

Turbos are often combined with direct or indirect fuel injectors and variable valve lift or timing systems to make the process even more efficient.

Electrified superchargers, which compress air for just a few hundred milliseconds to add brief low-end torque until the turbo charger kicks in, will also hit the market in the next few months.

Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue. We call this the ‘golden age of turbo’

Terrence Hahn, Honeywell TS

E-chargers, or e-turbos, will transform the driving experience, believes Mr Devauchelle, as they eliminate what’s called turbo lag – that slight delay in power boost you experience after pressing the accelerator.

“The turbo increases the engine’s maximum power. The e-charger gets you there even quicker,” he explains.

As such, e-turbos may rival established twin-turbo technology, where a small turbo takes care of the early stages of acceleration before the second turbo takes over.

The e-turbos’ batteries can be recharged in different ways, for instance by capturing energy during braking, explains Mr Hahn.

With enough electric power, e-chargers could take over more and more of the work done by the turbo.

Tesla electric carImage copyrightGetty Images
Image captionElectric cars, like this one made by Tesla, still have a tiny global market share

Eventually carmakers will redesign vehicle architecture, moving from standard 12-volt batteries to higher voltage systems.

Forty-eight volt architecture is emerging in luxury cars with many electric components, but e-chargers can also run on 12-volt batteries if they are only required to deliver brief boosts, explains Mr Devauchelle.

‘Golden age of turbo’

“Petrol power is moving from naturally aspirated engines to turbo charged engines at a faster rate than ever before,” says Terrence Hahn, president and chief executive of Honeywell Transportation Systems.

“Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue,” he predicts.

“We call this ‘the golden age of turbo’.”

But there is no silver bullet as carmakers continue to grapple with ever-stricter emissions regulation, coupled with huge penalties for non-compliance.

Any number of combinations of e-chargers, turbo chargers, multi-stage boosting, fuel injection, variable valve systems, and combustion-electric hybrid technologies are being explored.

“During 30 years in the industry, I have never before seen so much diversity,” says Mr Devauchelle.

“Nobody can afford the penalties.”

_86585198_landingpage_proceed-gt_desktop_lightbox-7

Turbo gives petrol cars a boost as diesel faces backlash

“Diesel has emerged as the dominant fuel type for company cars, as a result of great fuel efficiency, performance and low cost of ownership under the government’s CO2 emissions based tax regime,” says Gerry Keaney, chief executive of the British Vehicle Rentals and Leasing Association, whose members own or fleet manage more than three million cars in the UK.

“But the diesel proportion of new registrations has been falling gradually for some time, as modern petrol powered cars have become better at delivering similar benefits, and we expect this trend to gather pace.”

In the UK, even company car buyers now see downsized petrol engines, many emitting around 100g/km CO2, as a viable, efficient alternative to diesel.

Old-fashioned carImage copyrightThinkstock
Image captionThe age of the gas guzzling automobile is over

This is not just down to “anti-diesel sentiment”, says Al Bedwell, director, global powertrains at LMC Automotive. “It has more to do with petrol getting better and staging a fight-back, especially in small cars in Western Europe.”

Manufacturers such as Ford, Opel/Vauxhall, Hyundai and Volkswagen are all offering similarly downsized petrol engines these days, many emitting around 100g/km of CO2.

In Europe, diesel’s share of the market is set to drop from 53.3% of the market in 2014 to 51.5% in 2015, says Mr Bedwell, then continue sliding to 35% by 2020.

Power boost

Turbo chargers are traditionally associated with diesel engines, which needed a boost to give them more oomph. They weren’t “much fun to drive” without them, says Guillaume Devauchelle, head of innovation and science at automotive technology company, Valeo.

And the relative cost of adding turbo to an expensive diesel engine was lower, he explains.

Light vehicles market graphicImage copyrightGetty Images

But turbos are now increasingly infiltrating petrol engines because they deliver dramatic emissions reductions and improvements in fuel economy, without sacrificing performance, says Craig Balis, chief technology officer of Honeywell Transportation Systems, the world’s largest turbo maker.

A two-litre turbo-charged four cylinder petrol engine can match the output of a three-litre naturally aspirated V6 petrol engine, he says, so “the technology we have is really a no-compromise solution”.

Turbos work by using the engine’s exhaust gas to drive a turbine, which in turn drives a compressor, which compresses air. This air is then forced into the combustion chamber where it mixes with fuel to create additional power.

This means the engine won’t have to burn so much fuel to deliver the same output.

Video grab of smaller v, larger engineImage copyrightHoneywell 
Image captionTurbochargers help smaller engines achieve the same horsepower (hp) as larger engines

“Our turbos for passenger vehicles have turbines that spin at 200,000-300,000 revolutions per minute (rpm), generating temperatures of up to 1,000 degrees Celsius, so the metal is literally glowing red,” Mr Balis says.

By comparison petrol engines operate at just 6,000-7,000 rpm and diesel at 5,000-6,000rpm.

To cope with such extreme speed, pressure and heat, turbos need to be incredibly robust, so Honeywell is using ball bearings and other technologies that have been developed for military aircraft by the company’s aerospace division.

The turbos are also coupled with intercoolers that cool the airflow and increases its density as it is supplied to the engine, and with oil cooling systems that prevent overheating.

Instant power

Turbos are often combined with direct or indirect fuel injectors and variable valve lift or timing systems to make the process even more efficient.

Electrified superchargers, which compress air for just a few hundred milliseconds to add brief low-end torque until the turbo charger kicks in, will also hit the market in the next few months.

Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue. We call this the ‘golden age of turbo’

Terrence Hahn, Honeywell TS

E-chargers, or e-turbos, will transform the driving experience, believes Mr Devauchelle, as they eliminate what’s called turbo lag – that slight delay in power boost you experience after pressing the accelerator.

“The turbo increases the engine’s maximum power. The e-charger gets you there even quicker,” he explains.

As such, e-turbos may rival established twin-turbo technology, where a small turbo takes care of the early stages of acceleration before the second turbo takes over.

The e-turbos’ batteries can be recharged in different ways, for instance by capturing energy during braking, explains Mr Hahn.

With enough electric power, e-chargers could take over more and more of the work done by the turbo.

Tesla electric carImage copyrightGetty Images
Image captionElectric cars, like this one made by Tesla, still have a tiny global market share

Eventually carmakers will redesign vehicle architecture, moving from standard 12-volt batteries to higher voltage systems.

Forty-eight volt architecture is emerging in luxury cars with many electric components, but e-chargers can also run on 12-volt batteries if they are only required to deliver brief boosts, explains Mr Devauchelle.

‘Golden age of turbo’

“Petrol power is moving from naturally aspirated engines to turbo charged engines at a faster rate than ever before,” says Terrence Hahn, president and chief executive of Honeywell Transportation Systems.

“Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue,” he predicts.

“We call this ‘the golden age of turbo’.”

But there is no silver bullet as carmakers continue to grapple with ever-stricter emissions regulation, coupled with huge penalties for non-compliance.

Any number of combinations of e-chargers, turbo chargers, multi-stage boosting, fuel injection, variable valve systems, and combustion-electric hybrid technologies are being explored.

“During 30 years in the industry, I have never before seen so much diversity,” says Mr Devauchelle.

“Nobody can afford the penalties.”

_86585198_landingpage_proceed-gt_desktop_lightbox-7

Turbo gives petrol cars a boost as diesel faces backlash

“Diesel has emerged as the dominant fuel type for company cars, as a result of great fuel efficiency, performance and low cost of ownership under the government’s CO2 emissions based tax regime,” says Gerry Keaney, chief executive of the British Vehicle Rentals and Leasing Association, whose members own or fleet manage more than three million cars in the UK.

“But the diesel proportion of new registrations has been falling gradually for some time, as modern petrol powered cars have become better at delivering similar benefits, and we expect this trend to gather pace.”

In the UK, even company car buyers now see downsized petrol engines, many emitting around 100g/km CO2, as a viable, efficient alternative to diesel.

Old-fashioned carImage copyrightThinkstock
Image captionThe age of the gas guzzling automobile is over

This is not just down to “anti-diesel sentiment”, says Al Bedwell, director, global powertrains at LMC Automotive. “It has more to do with petrol getting better and staging a fight-back, especially in small cars in Western Europe.”

Manufacturers such as Ford, Opel/Vauxhall, Hyundai and Volkswagen are all offering similarly downsized petrol engines these days, many emitting around 100g/km of CO2.

In Europe, diesel’s share of the market is set to drop from 53.3% of the market in 2014 to 51.5% in 2015, says Mr Bedwell, then continue sliding to 35% by 2020.

Power boost

Turbo chargers are traditionally associated with diesel engines, which needed a boost to give them more oomph. They weren’t “much fun to drive” without them, says Guillaume Devauchelle, head of innovation and science at automotive technology company, Valeo.

And the relative cost of adding turbo to an expensive diesel engine was lower, he explains.

Light vehicles market graphicImage copyrightGetty Images

But turbos are now increasingly infiltrating petrol engines because they deliver dramatic emissions reductions and improvements in fuel economy, without sacrificing performance, says Craig Balis, chief technology officer of Honeywell Transportation Systems, the world’s largest turbo maker.

A two-litre turbo-charged four cylinder petrol engine can match the output of a three-litre naturally aspirated V6 petrol engine, he says, so “the technology we have is really a no-compromise solution”.

Turbos work by using the engine’s exhaust gas to drive a turbine, which in turn drives a compressor, which compresses air. This air is then forced into the combustion chamber where it mixes with fuel to create additional power.

This means the engine won’t have to burn so much fuel to deliver the same output.

Video grab of smaller v, larger engineImage copyrightHoneywell 
Image captionTurbochargers help smaller engines achieve the same horsepower (hp) as larger engines

“Our turbos for passenger vehicles have turbines that spin at 200,000-300,000 revolutions per minute (rpm), generating temperatures of up to 1,000 degrees Celsius, so the metal is literally glowing red,” Mr Balis says.

By comparison petrol engines operate at just 6,000-7,000 rpm and diesel at 5,000-6,000rpm.

To cope with such extreme speed, pressure and heat, turbos need to be incredibly robust, so Honeywell is using ball bearings and other technologies that have been developed for military aircraft by the company’s aerospace division.

The turbos are also coupled with intercoolers that cool the airflow and increases its density as it is supplied to the engine, and with oil cooling systems that prevent overheating.

Instant power

Turbos are often combined with direct or indirect fuel injectors and variable valve lift or timing systems to make the process even more efficient.

Electrified superchargers, which compress air for just a few hundred milliseconds to add brief low-end torque until the turbo charger kicks in, will also hit the market in the next few months.

Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue. We call this the ‘golden age of turbo’

Terrence Hahn, Honeywell TS

E-chargers, or e-turbos, will transform the driving experience, believes Mr Devauchelle, as they eliminate what’s called turbo lag – that slight delay in power boost you experience after pressing the accelerator.

“The turbo increases the engine’s maximum power. The e-charger gets you there even quicker,” he explains.

As such, e-turbos may rival established twin-turbo technology, where a small turbo takes care of the early stages of acceleration before the second turbo takes over.

The e-turbos’ batteries can be recharged in different ways, for instance by capturing energy during braking, explains Mr Hahn.

With enough electric power, e-chargers could take over more and more of the work done by the turbo.

Tesla electric carImage copyrightGetty Images
Image captionElectric cars, like this one made by Tesla, still have a tiny global market share

Eventually carmakers will redesign vehicle architecture, moving from standard 12-volt batteries to higher voltage systems.

Forty-eight volt architecture is emerging in luxury cars with many electric components, but e-chargers can also run on 12-volt batteries if they are only required to deliver brief boosts, explains Mr Devauchelle.

‘Golden age of turbo’

“Petrol power is moving from naturally aspirated engines to turbo charged engines at a faster rate than ever before,” says Terrence Hahn, president and chief executive of Honeywell Transportation Systems.

“Over the next five years, we’ll go from about a third to around half the cars sold having turbo chargers, and the growth will continue,” he predicts.

“We call this ‘the golden age of turbo’.”

But there is no silver bullet as carmakers continue to grapple with ever-stricter emissions regulation, coupled with huge penalties for non-compliance.

Any number of combinations of e-chargers, turbo chargers, multi-stage boosting, fuel injection, variable valve systems, and combustion-electric hybrid technologies are being explored.

“During 30 years in the industry, I have never before seen so much diversity,” says Mr Devauchelle.

“Nobody can afford the penalties.”

Add a printing service to your Android device in a flash

androidprintinghero

If printing to a non-cloud-ready printer on Android has you confounded, learn how to add a manufacturer-ready print service so you can print to networked printers on your LAN.

Thanks to Google cloud services, printing from your Android device is actually quite easy — this is especially true if you have a Google-approved, cloud-ready printer attached to your network. Don’t have one? That’s not a problem… you can always print to a classic printer attached to your desktop machine, as long as that printer has been set up and attached to your Google account via Chrome or Chromium.

But what if that network printer isn’t cloud-ready? You still may be in luck, thanks to the Google Play Store and the ability to easily add a print service to your device.

A caveat to using this system: Your printer manufacturer must have created an Android app. But don’t worry, you won’t have to scour the Google Play Store in search of that app… there’s an easier way. Let me show you.

First, you will need to be connected to the same wireless network as the printer in question. Go to Settings | Printing and then tap the menu button (three vertical dots in the upper right hand corner). Tap Add Service and then (if prompted) select the Google Play Store. In the resulting window (Figure A), you will see all of the apps listed for available printers.

Figure A

Figure A
 Image: Jack Wallen
Adding a print service specific to your printer on a Verizon-branded Nexus 6.

If the manufacturer of your printer is listed, tap it, and then tap Install. Once added to your device, you won’t find an actual app to open — you will find that your printer service is listed in the Printing settings of your device (Figure B).

Figure B

Figure B
 Image: Jack Wallen
A newly listed printer service.

Tap that listing and then enable it by tapping the On/Off slider (Figure C). You will be prompted to OK the service before it is turned on. The newly added service will search your LAN for a supported printer and connect to it for printing.

Figure C

Figure C
 Image: Jack Wallen
Enabling the Samsung printer service.

You should now be able to print to that non-cloud-ready networked printer that doesn’t happen to be attached to a desktop.

Google’s Project Zero has found 11 high-impact security issues in the top-end Samsung Galaxy S6 edge smartphone and only 8 of these have been fixed.

 

galaxys6edge_3227831b

Google’s Project Zero has found 11 high-impact security issues in the top-end Samsung Galaxy S6 edge smartphone. So far only 8 of these have been fixed.  Google says the reason for carrying out this exercise was to see how easy or difficult it would be to spot bugs and security vulnerabilities in Android phones manufactured by OEMs.

Google says “OEMs are an important area for Android security research, as they introduce additional (and possibly vulnerable) code into Android devices at all privilege levels, and they decide the frequency of the security updates that they provide for their devices to carriers.

Google’s team worked on gaining remote access to contacts, photos and messages; gaining access to the same via an app installed from Play with no permissions; and executing code across a device wipe.

According to Google, one of the bugs they discovered allowed for a downloaded file to be written as system. The blogpost notes, “when the file is unzipped in downloads, the API does not verify the file path and it can be written in unexpected locations.” This issue has been fixed. The other serious issue that Google discovered was with regard to Samsung’s email client where a ‘lack of authentication’ can grant access an unprivilege app access to emails. The app can even forward emails to another account, notes Google. This issue has also been fixed. Google also found “five memory corruption issues” when using “Samsung-specific image processing.” According to Google, the weak areas were “device drivers and media processing.” The image processing issue has not been fixed. Another issue, where an attacker can execute javascript embedded in mails also remains unpatched. Google says Samsung is promising to fix the remaining issues soon and that the high-severity issues were fixed via an OTA update within 90 days.